elektro-archiv.de

elektro-archiv.de

Die Wissensplattform für Elektrotechnik

Methode der kleinsten Quadrate

In technischen Problemstellungen ist es oft nötig, Abhängigkeiten zwischen zwei Größen zu untersuchen, und diese Abhängigkeiten mathematisch zu beschreiben. Dazu stehen meistens Versuchsdaten zur Verfügung, mit deren Hilfe auf den mathematischen Zusammenhang geschlossen werden kann. Ziel ist es dabei, eine Funktion zu ermitteln, die den Zusammenhang für einen gegebenen Wertebereich vollständig beschreibt. Eine Möglichkeit, diese Funktion zu berechnen, stellt die Gauß’sche Methode der kleinsten Quadrate dar.




Abbildung: Minimierung der Abstandsquadrate

Dabei wird zunächst der Funktionstyp festgelegt, welcher am Besten zu den Messdaten passt. Für die gewählte Funktion kann dann die Summe der Abstandsquadrate S berechnet werden. Diese ist noch abhängig von den Koeffizienten der gewählten Funktion. Für eine optimale Anpassung muss die Summe der Abstandquadrate minimiert werden:

=> Minimum

 Dies kann erreicht werden, indem die Koeffizienten der Funktion so bestimmt werden, dass die partiellen Ableitungen der Summe der Abstandsquadrate für alle Koeffizienten 0 werden:

,, ...

Mit dieser Forderung lassen sich Normalgleichungen aufstellen, die ein lineares Gleichungssystem mit n Gleichungen und n Unbekannten bilden. Diese sind in der Regel nichtlinear und lassen sich demzufolge nur numerisch mit Computeralgebrasystemen lösen.



zum Seitenanfang

www.elektro-archiv.de